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A Espresso!

The problem can be solved by simulating the serving of orders in O(n) time. Use a variable
to keep track of the current amount of water in the tank. Whenever there is not enough
water for the next order, reset the water amount to a full tank and increment the answer by
one. Do not forget to deduct the water amount consumed by the current order after refilling
(a common mistake).

B Ultimate Binary Watch

The problem can be solved by decomposing each of the four digits into their binary forms.
This can be done using bitwise operation, e.g. the condition ((1 << 3) & digit) > 0 can
be used to check if a digit has the bit for 2% = 8 in most programming languages. To render
the watch face, you may allocate a 2D array of characters and then fill in the character
each bit. Be careful not to add extra spaces. Make sure to compare your program’s output
against the sample output with a check on the spaces.

C Concert Rehearsal

This problem cannot be solved by simulation because there can many students (n < 2-10°),
the number of days and the recital hall’s availability on each day can be big numbers (p, k <
10%). Simulating the whole process can take up to O(pq) time and will not finish in time.

A key observation is that if a day starts with student i’s performance, then it will always
ends with a fixed student’s performance. Let that student be end[i]. We shall compute end]i]
for every student first. Again, we cannot simulate for each student, which would take O(np)
time and is too slow. Instead we can precompute a prefix sum array of the performance
times and then do binary search (O(nlogn)) or two pointers (O(n)) on it to compute end|:]
more efficiently.

It is tempting to simulate the process using end]i], which however is O(k) and still too
slow. A second observation is that under the Pigeonhole Principle, after n + 1 days we are
sure to encounter two days that start with a same student’s performance. This means that
the process enters a cycle. We can compute the length of the cycle and divide k£ by the
length to get the number of rehearsal passes in all these cycles in O(1) time. Any remainder
days can be simulated in O(n).



D Land Equality

This problem can be solved by a small number of case work:

e If there are two zeroes, then we can give each descendant one zero so that their land
prosperity difference is zero.

e If there are no zeroes, then the two descendant’s land will both have prosperity values
that are powers of two, say 2% vs. 2°. We want to minimize |a — b|, and must divide the
twos as evenly as possible. Be careful about integer overflow, as the maximum answer
is 231.

e When there is a single zero, we shall further divide the cases:

— If there are no twos, then all non-zero cells contain a 1. So one descendant will get
0, and the other will get 1.

— If there are no ones, then all non-zero cells contain a 2. We shall give a 2 to one
descendant, and all the remaining cells to the other descendant (including that
zero). The difference is 2.

— When there are both ones and twos, this is the trickiest case. A common mistake

is to think that we can give a 1 to one descendant, and the other descendant gets
everything else (including the zero). A breaker case is a board of size 1 x 3:
0 1 2,in which there is no way to give that 1 to one descendant without separating
the remaining cells into two connected parts. This can be handled by checking if
the board has at least two rows or two columns, in which case it is always possible
to give 1 to one descendant as the remaining cells will guarantee to be connected.
If the board has only one row/column, it can be seen that it is only possible to
give 1 to one descendants if that 1 is the first/last cell of the row/column.

E Even Substrings

We can compute a prefix letter parity mask mask[1..n] that has 6 bits: the jth bit in mask|i]
is set when the prefix s[1..7] has an odd number of the jth character. To answer how many
substrings in s[l..r] are even, we can iterate all 26 = 64 masks and count for how many times
each mask m appears in mask[l — 1..r]. A mask m that appears ¢ times adds ¢(c — 1)/2
to our answer. To add those counts efficiently, we can use a segment tree. In each segment
tree node, we maintain how many times each of the 2% masks appear in the range covered
by that node. Modifying a character s[i] = x can be handled using lazy propagation, as we
are changing all the masks in mask[i..n]. The total running time is O(2%(n + ¢) logn).

F Bracket Pairing

The problem can be solved in two different ways.

Enumeration. Observe that there are only 4!° ~ 1M choices in the left and right half
of the sequence. We can enumerate those choices in each half separately, and then meet
their results in the middle. We only care about the brackets that are still open/close in the
enumeration of the left/right half. This gives us a solution of O(49).



Dynamic Programming Let our bracket sequence be s[1..n|(n < 20). Let f(i, ) be the
number of ways to fill in the brackets in s[i..j] so that s[i..j] is a valid bracket sequence itself.
We can try to cut s[i..j] into two parts that are both valid bracket sequences themselves. We
have f(i,j) =>_, f(¢ + 1,k — 1) - match(i, k) - f(k, j) where match(i, k) counts the number
of ways to match s[i] with s[k]. The DP takes O(n?) time.

G Parking Lot

The problem can be modeled as a shortest path problem where a pair of grid vertices has
an edge that is the segment that connects these two vertices. Let n = max(r,c). There are
O(n*) edges in total. An edge is invalid and shall be discarded if it cuts through a cell that
contains a parked car. Checking if an edge is invalid can be done in O(n) time by iterating
each row (or column) that the segment intersects with and finding the intersection points.
The graph construction thus takes O(n°). The problem then can be solved using Dijkstra’s
algorithm for weighted shortest path in O(n?logn) time. Dynamic programming also works
here in O(n*) given that we will never take an edge that goes to the bottom-left or the
top-right regions of our current location.

H Subprime

We can first compute the first h = 10° primes using Sieve of Eratosthenes in O(hloglog h)
(the largest of them is 1299709). Then we can iterate over each prime in the range, and
perform a straightforward substring check. Checking one prime takes O(max(7, [p|)) as the
primes have at most 7 digits.

I Word Puzzle

The blanks in a word puzzle is a subsequence of the puzzle word. The typed letters must be
a rotation of the subsequence. We can first find all the distinct rotations of the typed string
s. Since |s| is at most 50, this can be done in O(|s]?) easily.

Then for each unique subsequence u obtained from those |s| rotations, we count how
many subsequences of p equal it. This can be done using standard dynamic programming.
The DP state is f(i,j) which is the number of ways to have u[l..j] as a subsequence of p|[1..i]
and u[j] = p[i]. The DP takes O(|ul|p|) time for each u. The total time of the solution is

O(Isl*|pl)-

J Code Guessing

This problem can be solved by case work. Yet case work is a bit error prone and it is easy
to mishandle one of the six cases. A safer alternative is to enumerate what digits Bob has
(only 21 possibilities), sort the digits, and counts how many ways can the enumerated Bob’s
digits match the given sorted positions. If the number of ways is exactly one, then Alice can
uniquely determine Bob’s digits.



K Tree Number Generator

We can use doubling preprocessing to solve this problem. For each node i and each power of
two 2F, we preprocess the digit concatenation modulo m for the first 2% nodes along the path
from node 7 to the root. We will need the digit concatenation in both ways: upwards and
downwards. While we are constructing the doubling results, we can also preprocess doubling
node parents/ancestors for later computing Lowest Common Ancestor (LCA). Preprocessing
takes O(nlogn) time.

For each query Get(a,b) we first compute the LCA(a,b) = ¢. The digits from a to ¢
are concatenated upwards, while the digits from ¢ to b are concatenated downwards. These
concatenation results modulo m can be derived from our preprocessed doubling results in
O(logn) time. All queries can be answered in O(qlogn) time.

L Lone Rook

This problem can be solved in a BFS fashion. We maintain a queue to process the cells
reachable by the rook. A cell is reachable if a rook can eventually move to it safely after
removing all its attacking knights. We preprocess for each cell how many knights attack it
as attacked|i][j]. Whenever a reachable cell ¢ is popped from the queue, we do the following:

e If ¢ has a knight, then we remove that knight and reduce attacked[i][j] of those cells
attacked by this knight. If any of them, say ¢/, becomes no longer attacked, then go in
four directions from ¢ to find a cell reachable by rook. If such a cell exists, then we
add ¢ to the queue. This step takes O(8 - 2(r + ¢)) time.

e Go in four directions and add all cells to the queue until we hit a knight. If this knight
is attacked, we stop. Otherwise we add the knight’s cell to the queue and stop. This
step takes O(2(r + ¢)) time.

Every time we add a cell to the queue, we mark that cell as reachable. Each cell will be
added to the queue exactly once. The total running time is 8 - 2(r + ¢)re.

M Stream Lag

First we sort the packets by their ID in O(nlogn) time. Then we can calculate the lag in
O(n) time by iterating the sorted packets and maintaining the current time t,,,. Initially
thow = 0. When the next packet arrives at ¢, it introduces a lag of max(t — t,ou, 0), and ¢,
becomes mazx (tyow, t) + 1 after playing it.
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